
Brown University
 

 
STRESS CONSTRAINED G CLOSURE AND RELAXATION OF STRUCTURAL DESIGN PROBLEMS
Author(s): ROBERT LIPTON
Source: Quarterly of Applied Mathematics, Vol. 62, No. 2 (June 2004), pp. 295-321
Published by: Brown University
Stable URL: https://www.jstor.org/stable/43638587
Accessed: 10-01-2020 19:40 UTC

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

https://about.jstor.org/terms

Brown University is collaborating with JSTOR to digitize, preserve and extend access to
Quarterly of Applied Mathematics

This content downloaded from 167.96.145.178 on Fri, 10 Jan 2020 19:40:54 UTC
All use subject to https://about.jstor.org/terms



 QUARTERLY OF APPLIED MATHEMATICS
 VOLUME LXII, NUMBER 2
 JUNE 2004, PAGES 295-321

 STRESS CONSTRAINED G CLOSURE AND RELAXATION

 OF STRUCTURAL DESIGN PROBLEMS

 By

 ROBERT LIPTON

 Department of Mathematics , Louisiana State University , Baton Rouge, LA 70803

 Abstract. A generic relaxation for stress constrained optimal design problems is
 presented. It is accomplished by introducing the stress constrained G closure. For a
 finite number of stress constraints, an explicit characterization of the stress constrained
 G closure is given. It is shown that the stress constrained G closure is characterized by
 all G limits together with their derivatives. A local representation of the set of all G
 limits and their derivatives is developed.

 1. Introduction. In the absence of stress constraints, a large body of theory has
 been developed that facilitates the numerical solution of structural design problems for
 multiphase solid structures. References to the literature and overviews of the subject can
 be found in [1], [6], [8], [16], and [29]. In addition to designing for structural response,
 it is also of central importance to control the stress inside structural components made
 from composite materials. Regions of large stresses are most likely to be the first to
 exhibit failure during service. The objective of this work is to identify the relaxed design

 problem for stress constrained design.
 We consider structural elements made from N linearly elastic materials with elasticity

 tensors Ai, A2, A3, . . . , A#. The structural domain is a bounded set Ū in R3 with
 Lipschitz continuous boundary. A generic point in Ū is denoted by x. The elastic phases
 occupy the N subsets fîi, . . . , ííjv where fži U U • • • U ííjv = ÍL A particular choice
 of component elasticity tensors is specified by the array A = (Ai, A2, A3, . . . , An). The
 local elasticity tensor C(A, x) is piecewise constant and takes the value C(A, x) = A¿
 in the îth material. Denoting the indicator function of the ¿th material by tira local
 elasticity tensor is written C(A, x) = X¿(x) Here 'i = 1 m the ¿th material and
 zero outside. The design space consists of all partitions of fž into Lebesgue measurable
 subsets íi¿, i = 1,2,..., iV, occupied by the different materials subject to the resource
 constraints mea s(íí¿) < 7 Here J^¿7¿ > meas(íí) and the vector of resource constraints
 is written 7 = (71, 72, , 7 n)-
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 296 ROBERT LIPTON

 For a body load f in VF-1'2(Í), R3), the elastic displacement u is the Wq,2(îî,R3)
 solution of

 - div(C(A, x)£(u)) = f . (1.1)
 The stress at each point in the composite a is given by the constitutive relation

 cr(x) = C(A, x)e(u(x)). (1.2)

 Here e(u) is the strain tensor given by

 6(u)ů' = (ui,j "F uj,i)/2i (1-3)

 where Ui is the ¿th component of displacement u and Uij is its partial derivative in the
 jth coordinate direction. The equilibrium equation (1.1) holds in the weak sense; i.e.,
 for every v in Wq,2(íí,R3),

 [ C(A,x)e(u) : e(v)dx = í f • vdx. (1.4)
 JÇÏ Jo,

 The contractions C(A, x)e(u) : e(v) and f • v are given by Cijki(A, x.)e(u)ije(v)ki and
 f iVi respectively where repeated subscripts indicate summation.
 The design criterion is a function of the elastic field u and is denoted by F( u). The

 type of structural design criteria considered here are those associated with the compliance

 of the structure given by F( u) = f • u dx or the distance of the displacement from a

 desired target displacement û given by F( u) = fQ |u - û|2,dx. Both of these functions
 are continuous with respect to weak convergence in W1,2(íl, R3). However, the results
 given here are not restricted to this situation and apply to multi-load design problems or
 any design criteria that is continuous with respect to G convergent sequences of designs
 [5]. The objective of the design problem is to optimize F( u) over the class of admissible
 configurations subject to constraints on the stress. One measure of stress concentration
 is given by the sup-norm of the stress field in the composite body. This is denoted by

 Il M Hoc = ess sup |<t(x)|, (1.5)

 where ļcrļ = y/a : a. We introduce the prototypical design problem given by

 P°° = inf F( u), (1.6)
 Configurations,
 meas(fži)<7i

 subject to
 IIMHoo<tf, (1.7)

 where u is a solution of the equation of state (1.1) and a = C(A,x)e(u). Here K is
 a preset tolerance. We point out that the constraint (1.7) is equivalent to the infinite
 number of constraints given by

 f pj(x)'a'2dx < K2 f pj(x)dx, for all pj (x) , (1.8)
 Jn JŪ

 for a countably dense set {pj}j^i of the nonnegative functions in C°°(fž). From (1.8) it
 is clear that a theory for design problems with a finite number of stress constraints given

 by

 PL = inf F(u), (1.9)
 Configurations,
 meas(ííi)<7¿
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 STRESS CONSTRAINED G CLOSURE 297

 subject to

 Í pj(x)|cr|2dx < K2 Í pj(x)dx, for j = 1, . . . , L, (1-10)
 Jq Jq,

 is a prerequisite for understanding (1.6).
 The design problems stated above are not readily amenable to numerical solution. The

 fundamental reason for this is that problems of this type do not possess configurations
 for which the infimum in (1.6) and (1.9) are attained; see [15], [19], and [26]. Thus
 any approach that seeks to identify optimal configurations is likely to fail. Instead one
 seeks to identify minimizing sequences of configurations that approach the infimum in
 (1.6) and (1.9). Here the objective is to identify nearly optimal configurations. Methods
 developed for this purpose are known as relaxation methods; see [4] and [10]. Here
 the original design problem is replaced by a "relaxed version" that is used to identify
 minimizing sequences of configurations for the original design problem.
 The generic feature of minimizing sequences is the appearance of zones in which in-

 finitesimally fine oscillations of material properties occur. This motivates the extension of

 the design space to the set of all G limits of sequences of local elasticity tensors associated

 with configurations of the component materials; see [17] and [20]. Roughly speaking, a
 G limit can be thought of as an elasticity tensor that takes values in the set of effective
 elasticity tensors associated with mixtures of the N component materials. This exten-
 sion of the design space suffices to produce the desired relaxed problem for optimizing
 structural performance in the absence of stress constraints. The extended design space
 is referred to as the G closure of the set of local elasticity tensors C(A,x); see [6].
 When dealing with stress constrained problems, a strictly smaller extension of the

 design space is required. For stress constrained problems, one again extends the space
 to include G limits. However, in this context, it is seen that the relaxation is obtained
 by the extension over the subclass of configurations for which the stress constraints (1.7)

 or (1.10) are satisfied; see Theorem 4.1. This extension of the design space is referred to
 as the stress constrained G closure of the set of local elasticity tensors C(A, x). For a
 finite number of stress constraints, an explicit characterization of the stress constrained
 G closure is given in Theorem 4.2. It is seen that the stress constrained G closure is
 characterized by all G limits together with their derivatives. This is used to develop an
 explicit version of the relaxed stress constrained design problem; see Theorems 4.3 and
 4.4. An explicit upper bound for the stress constrained G closure associated with (1.7) is
 presented in Theorem 4.5. The homogenized design problem associated with the upper
 bound is given in Theorem 4.6 and its relation to nearly optimal configurations is given
 in Theorem 4.7.

 In order to characterize the stress constrained G closure, one is obliged to compute
 the stress constraints (1.10) for G converging sequences of tensors. The difficulty stems
 from the fact that the limit of the stress constraints is not given by the stress constraint

 applied to the weak limit. This is due to the lack of continuity that can be expressed as
 follows. Given a sequence of stresses {cr71}^! converging weakly in L 2 to crM, one has
 that

 lim [ p, (x)|crn|2dx > f p. (x)|<rM|2dx, (1-11)
 Jn Jn
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 298 ROBERT LIPTON

 where equality holds only if {a71}™^ converges strongly in L ? on the support of the test
 function pj . In what follows we provide a formula for the limit on the left-hand side of
 (1.11). This formula is presented in Theorem 3.1 and is given in terms of derivatives of
 the G limit; see Sec. 2, Theorems 2.1, 2.2, and 2.3. It is pointed out that Theorem 2.1
 provides an extension of the periodic localization principle [32] to the derivatives of G
 limits. Theorems 2.2 and 2.3 are in the spirit of [24] for the local representation of G
 limits.

 The tool used to establish Theorem 4.5 (the upper bound on the stress constrained
 G closure associated with (1.7)) is given by Theorem 3.2. In Theorem 3.2, a lower
 bound on the limit inferior of the L°° norms of the stresses associated with G convergent
 sequences of elastic tensors is obtained. However, in order to precisely characterize the
 stress constrained G closure associated with (1.7), upper bounds on the limit superior of
 the L°° norms of stresses associated with G convergent sequences of elastic tensors are
 required. The goal of future work will be to establish the necessary upper bounds when
 the limit superior of the L°° norms of stresses is finite.

 Earlier work [13] addresses the problem of optimal design in the context of thermal
 conductivity in the presence of a finite number of mean square constraints on the temper-

 ature gradient. As in the present case, the relaxed problem is given in terms of gradients
 of G limits. A related problem in which there has been recent development appears in
 the context of optimal design for multiphase conductors made from isotropic materials.
 The goal is to minimize the mean square deviation of the gradient from a prescribed
 target field. This problem is proposed in the work of [30] and requires new techniques.
 Here the extra difficulty is also due to a lack of continuity under weak convergence. For
 this problem it is the objective functional that is discontinuous with respect to weak
 convergence. In [30] a relaxation is obtained for a dense Gs set of target fields in the
 space VFo'2(ii, R3). This is accomplished through the introduction of the notion of strong
 L2 closure. It is shown that minimizing sequences are exclusively associated with the
 well-known rank one laminates. Here the local layer orientation is parallel to the gradient
 field. As of this writing, this class of targets resists an explicit representation. However,
 numerical experiments using layered materials, see [14] and [31], suggest a conjecture
 that 0 lies in the G s set. For composites made of two isotropic phases, the work of
 [14] and [31] shows that minimizing sequences of configurations can be found within the
 class of rank one microstructures for any choice of target field. The more recent work
 [9] provides an explicit formula for the relaxation of the mean square deviation. This is
 used to rule out the appearance of minimizing sequences of layered configurations with
 more than one scale of oscillation and establishes that minimizing sequences of layered
 materials are exclusively given by rank one laminates. Another recent development is
 given in [23]. Here, for any choice of target, the notion of constrained quasiconvexity
 [22] is applied and is used to explicitly compute the constrained quasiconvex envelope of
 the mean square deviation [23] . This is also used to establish that minimizing sequences
 can be found within the class of rank 1 laminates as well as rule out the appearance of
 layered materials with more than one scale of oscillation.
 In order to expedite the presentation, the following notation is used. The contractions

 of symmetric fourth order tensors A with second order tensors a are written [A]ijki(Xki =
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 A cr, contractions of two fourth order tensors A and M are written [ A]ijki[M]kiop = AM,
 contractions of two second order tensors a, e are written = cr : e, <7 : cr = |cr|2, and
 contractions of second order tensors e and vectors x are written t-ijXj = ex.

 2. Local formulas for the derivatives of G limits and a local representation
 theorem. In this section, local formulas for the derivatives of G limits are provided
 as well as a local representation theorem for derivatives of G limits. In order to define
 derivatives of G limits, we introduce the neighborhood AT (A) of the array A of component
 elasticity tensors. Arrays in this neighborhood are denoted by P = (Pi, P2, • • . , Pjv).
 The neighborhood is chosen such that all tensors P¿ in the array satisfy the constraint
 0 < A < P¿ < A. The associated set of local elasticity tensors C(P, x) = YIíLi X¿(X)P¿
 for P in Af(A) for which fQ Xidx < 7 ť is denoted by C( A, 7). The G convergence is given
 in the following definition [21].

 Definition 2.1. The sequence of elasticity tensors {Cn(A,x)}^Ļ1 G converges to
 CE(A, x) if and only if, for any open subset set cu of ft and any f in W~1ì2(uj, R3), the
 solutions un in Wq,2(u;) °f

 - div(Cn(A, x)e(un)) = f (2.1)

 converge to u weakly in Wg'2(u;) and

 Cn(A,x)e(un) - Cß(A, x)e(u) (2.2)

 weakly in L2(iî, R3x3), where u is the Wq'2(u) solution of

 -div(C£;(A,x)6(u)) = f. (2.3)

 The G limit is Lebesgue measurable with respect to the x variable [27]. Two fundamental
 compactness properties of G convergence are now stated.

 Property 2.1. Given any sequence of coefficients {Cn(A,x)}^Ļ!, there is a subse-
 quence {Cn'(A, x)}£?=1 and an elasticity tensor CE(A,x) such that {Cn (A, x)}£?=1 G
 converges to C^(A, x).

 This property is established for the case of symmetric coefficients in [27]. For the
 nonsymmetric case, see [21]; see also [28] for elliptic systems. This property extends to
 the elasticity tensor viewed as a function of P on Af( A).

 Property 2.2. Given a sequence (C^Pjx)}^, then there exists a subsequence
 {Cn'(P, x)}£?=1 and an effective elasticity function C£(P,x) such that {Cn (P, x)}£?=1
 G converges to C£(P, x) for every P in Af( A).

 This property follows directly from [29].
 In order to define local formulas for derivatives of G limits, we consider a sequence

 of configurations with elastic properties {Cn(P, x)}^Ļļ that G converge to the tensor
 C^(P,x) for every P in AT (A). Fix a cube Q(x, r) of side length r centered at some
 point x in Ū. For r sufficiently small, Q(x, r) is contained within ÎÎ. Given a constant
 strain ē applied to the cube, the local oscillatory response function is denoted by w^'r,

 where w^'r is the Wķ2(Q(x., r), R3) solution of

 - div(Cn(A, y)(e(w^'r(y)) + e)) = 0, for y in Q(x, r). (2.4)
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 300 ROBERT LIPTON

 Here VK^'2(Q(x, r), R3) is the subspace of functions in W¿'2(R3,R3) that are periodic
 with period cell Q(x, r) and zero mean when averaged over Q(x, r).
 The local response functions are used to define directional derivatives of the G limit
 in the following theorem.

 Theorem 2.1. The directional derivative of C^(P, x) at P = A with respect to the ith
 component elasticity in the direction specified by the symmetric fourth order tensor M ¿
 is given by

 3CE(A,x)
 m (2-5)
 3 3 3 3

 klmn

 k= 1 /=1 m- 1 n-1

 x r-.0n-»oo lim lim (l/|Q(x,r)|) / x"(e(wl'r)fe¡ + ēfcļ)(e(wf'r)mn + ēmn)dy, r-.0n-»oo JQ(x,r)

 where ē is any constant strain. The derivative is Lebesgue measurable with respect to x.

 It follows that the definition of the îth phase gradient denoted by (V^mnC£;(A, x))ē : e
 is given by the local formula

 (Vlim„CĒ( A,x))ē:ē

 - ) lim >0 n- lim »oo (l/|Q(x, r)|) f XĪ(e(wi'r)kl + ēw)(e(w|'p)mn + ěmn)dy (2'6) ) >0 n- »oo JQ(x,r)

 and

 (VfcifciCĒ(A,x))ē : ē = lim lim (l/|Q(x,r)|) í xī (e(w|'r)fcí+ěw)(e(w|'r)feí+€fcí)cřy,
 r- >0 n- >oo JQ(x,r)

 (2.7)
 where repeated indices indicate summation. The formula for the G limit is

 C£(A, x)ē : ē = i lim ^0 n- lim »oo (l/|Q(x,r)|) / Cn(A,y)(c(w?'p) + ē) : (e(w?'p) +ě)dy. i ^0 n- »oo JQ(x,r)
 (2.8)

 The local formula (2.8) for the G limit is known; see [27] and [32]. In fact, formula
 (2.8) holds true when the response functions are chosen from any space V such that
 W01,2(Q(x,r),R3) CVC where

 Wl-2(Q(x, r), R3) = {v in IT1'2(Q(x, r), R3) : f e(v(y))dy = 0}. (2.9)
 JQ(x,r)

 This follows directly from Remarks 13, 17, and 18 of [27]. The formulas (2.5) and (2.6)
 for the derivatives of the effective elastic tensor are semi-explicit in that they are given
 in terms of sequences of solutions to local problems. These formulas hold for general
 oscillations and are obtained without any hypotheses on the sequence of configurations.
 They provide the extension of the concept of periodic localization put forth in [32] to the
 derivatives of G limits.
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 We present a local representation of the set of all G limits and their derivatives.
 Consider a G limit C^(A, x) together with its phase gradients

 f ťCB(A, x) d=if ViimnCE(A, x)opgr (2.10)

 and denote them by the array (C^A, x),d CE(A, x)), defined by

 (Ce(A, x),<9Ce(A, x)) d= (Cb(A, x), V^^A, x), . . . , V"CĒ(A, x)). (2.11)

 We provide a characterization of the array (CE(A,x),dCE(A, x)) for almost all x in Si.
 To start, we consider any partition of the unit cube into N Lebesgue measurable subsets.
 The indicator functions of these subsets are denoted by i = 1, • • • , N. Given a vector
 9 = (6 1 , 02- ■ • ■ , 9 N ) such that 0 < 0, < 1 and &i = 1, the set So (A) is the set of all
 arrays (CM (A), dCM (A)) such that there exists a Co(P, y) = Xi(y)P» with E in

 V( A), fQ(01) Xidy = 9i and

 CH (A)e : ē = [ C0(A, y)(e(w) + ē) : (e(w) + t)dy
 JQ( 0,1)

 VlCH(A)ē:ē= [ X¿(y)(e(w) + ē) ® (e(w) + ē)dy, i = 1,. . . ,N, (2.12)
 JQ( o,i)

 where w is the Wķ2{Q{ 0, 1),R3) solution of

 - div(C0(A, y)(e(w(y)) + ē)) = 0 (2.13)

 for any constant strain ē. For P in jV( P), the function CH(P) is given by

 C"(P)ē :e - f C0(P, y)(e(w) + ē) : (e(w) + e)dy, (2.14)
 •'<3(0,1)

 where

 -div(C0(P,y)(e(w(y)) + ē)) = 0. (2.15)

 Direct calculation (as in the proof of Theorem 2.1) shows that the derivatives of CH(P)
 at P = A are given by (2.12).

 Theorem 2.2. For almost every x in ÍŽ, the array (Cß(A, x),9Cß(A, x)) lies in the
 closure of Se (A).

 The converse of Theorem 2.2 is given by

 Theorem 2.3. Given the measurable functions 0¿(x), i = 1, . . . , N, such that ^2i 0¿(x) =
 Jn^(x)^x - suppose that for every x in ÍŽ that the measurable tensor C(P, x)

 is a limit of tensors of the form (2.14) and that the array of measurable tensors (C(A, x),

 ÖC(A, x)) takes values in the closure of S$(x) (A), then there exists a sequence
 {C^PjX)}^^ C C( A, 7) such that {Cn(P, x)}^! G converges to C(P, x) for all P
 in J'f{A).

 The proofs of Theorems 2.1, 2.2, and 2.3 are given in the following subsections.
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 2.1. Proof of Theorem 2.1. In this subsection the formula for derivative of the G limit
 is established. Consider a sequence (C^QPjX)}^! that G converges to CE(P,x) for
 every P in Af( A). Given a constant strain €, the local oscillatory response w™'r is the

 W^2(Q{x1 r); R3) solution of (2.4). The differential equation (2.4) is written in the weak
 form given by

 [ Cn(A, x)(e(w"'r) + c) : e(v)dy = 0, (2.16)
 jQ{x,r)

 for all v in W#2(Q(x, r); R3). The volume of Q(x, r) is denoted by |Q(x,r)| and an
 application of Cauchy's inequality in (2.16) gives

 / |e(w?'r)|2dy < (A2/A2)|<5(x, r)| |ē|2, (2.17)
 JQ(x,r)

 and

 f |e(w?) +ē|2dy < (A2/A2 + l)|Q(x,r)| |ē|2. (2.18)
 JQ(xyr)

 Choose a number 5ß and M such that A + 60M. are in Af( A) and consider the sequence
 {Cn(A+¿/?M, x)}^!- Here M is an array of elastic tensors that is identically zero except
 for the zth component elastic tensor M¿. Here is of norm one where the tensor norm is

 given by |M¿| = The sequence of coefficients {Cn(A+¿/?M,x)}~=1
 differs from {Cn(A,x)}^=1 by the increment SßM. ¿x™- The G limit for the sequence
 {Cn(A + ¿/?M,x)}~=1 is written as CE(A + SßM,x). We set SC = CE{A + SßM,x) -
 CE( A,x) and use (2.8) to compute SC with respect to the increment 50. The oscillatory
 responses associated with the sequence {C"(A+¿/3M. x)}^! axe denoted by w"'r, where

 w""r are W^'2(Q(x, r);R3) solutions of

 f Cn(A + Sß M, y)(e(w?'r) + ē) : e(v)dy = 0, (2.19)
 jQ(x,r)

 for all v in Wķ2{Q{x, r);R3).
 It follows from (2.8) that

 SCe : e = lim lim (l/|Q(x,r)ļ) [ Cn(A + á/3M,y)(e(wJ'r) +ē) : (e(w£'r) +ē)dy
 i ►(> n-*oo JQ(x,r)

 - r- lim »0 n- 1im »oo (l/|Q(x,r)|) / C,(A,y)(e(w?'r) + ē) : (w?'r) + ē)dy. (2.20) r- »0 n- »oo JQ(x,r)

 Writing Cn(A + SßM,y) = Cn(A,y) + SßMiX™ and w"'r = w"'r + <5wn'r, where
 Swn'r = w"'r - w"'r, one has, for every v in W^'2 (Q(x, r); R3), the equation

 0= f SßMiX?(e(w?<r) + ē) : e(v)dy + f C"(A + Sß M, y)e(¿w"'r) : e(v)dy.
 JQ(x,r) JQ(x,r)

 (2.21)
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 Setting v = áwn,r in (2.21) and substitution into (2.20) gives

 SCē:ē

 = Sß lim lim
 r- ► 0 n- »oo

 X (l/|Q(x,r)|) / (MiX?(e(wr) +ē) : (e(w?'p) + e)
 JQ(x,r)

 + MiXr(e(w?'r) + ē) : e(6wn'r))dy. (2.22)

 Setting v = ôwn,r in (2.21) and application of Cauchy's inequality gives

 / |e(áwn,r)|2cřy < á/32À_2|<5(x,r)| |ë|2(l + (A/A)2). (2.23)
 JQ(x,r)

 Estimates (2.18) and (2.23) show that

 |(l/|Q(x,r))| f MiXr«w?'r) +ë) : e(Swn'r)dy' < Sß |ē|2(l + (A/A)2). (2.24)
 JQ{x,r)

 From this one deduces that

 SCe :e = Sß lim lim (l/|Q(x,r)|) Í MiXi(e(wjlV) + ē) : (e(w"'r) + t)dy + 0(6 ß)
 r- +0 n- >00 J Q(x5r)

 (2.25)
 and (2.5) follows. The measurability of dCE(A, x)/óM¿ is assured as it is a pointwise
 limit of measurable functions and Theorem 2.1 follows.

 2.2. Proof of Theorem 2.2. Consider a sequence of configurations with elastic proper-
 ties {Cn(P, x)}^L_1 in C( A, 7) that G converge to the effective tensor CE(P,x) for every
 P in Af( A) and with characteristic functions {x?}^Li converging to in L°° weak *.
 Then for any cube Q(x, r) contained in fì, one has

 n"^°° lim (l/|Q(x,r)|) [ Xidy = (l/'Q(xir)') f My. (2.26) n"^°° JQ(x,r) J Q(x,r)

 At the Lebesgue points of one sees that

 r- lim >0 n- lim >00 (l/|Q(x,r)|) [ x?dy = 0i(x). (2.27) r- >0 n- >00 ÍQ(x,r)
 Starting with the formulas (2.6), (2.8), and (2.27), we choose a diagonal sequence

 indexed by j such that 77 - > 0 and rij - > 00 as j - ► 00, for which

 (V'C^A, x))ē : ē = lim (l/|Q(x, r,-)|) [ X? (<w¿) + ē) ® (e(w|) + l)dy, (2.28) J_>0°

 C£(A, x)ē : ē = ļim (l/|Q(x, rá) |) í Cn' (A, y)(e(w£) + ē) : (e(wf) + t)dy (2.29)
 J_>0° d

 and

 öj(x) = lim(l/|<5(x,rj)|) / (2-30)
 Here the local oscillatory response function is denoted by w|, where w| is the
 W#2(Q(x, 77), R3) solution of

 - div(Cnj (A, y)(c(w|(y)) + ē)) = 0, for y in Q(x,r¿). (2.31)
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 To prove Theorem 2.2 we change coordinates so that x = 0 and show that

 (C^(A, 0), dCE(A, 0)) lies in the closure of Sq(A). Using the rescaled variable z = y/r¿

 and writing w^(y) = where </4(z) is the Wļ:2(Q( 0, 1);R3) solution of

 -div(Cn^(A,rJz)(€(0Í(z)) + ē)) = 0, for z in Q(0, 1), (2.32)

 it is seen that

 (V'C^A, 0))ē : ē = lim f xT (*í'z)(e(<fé) + ē) <g> (e(<g) + e)dz, (2.33)
 1-*00 JQ( 0,1)

 Cß(A, 0)ē : ē = lim f C"' (A, rjz)(e(<pt) + ē) : (e(0|) + t)dz (2.34)
 ^°°Jq(q,i)

 and

 0i( 0) = lim [ Xij {vjz)dz. (2.35)
 3^°° JQ{ 0,1)

 To conclude the proof we show that, for sufficiently large indices j, we can slightly modify

 Xi° so that its modification x¡3 satisfies

 0i( 0)=/ x^(rjz)dz (2.36)
 Jq( o,i)

 for every j greater than some J and

 (V*Cß(A, 0))ē : ē = lim f xT (^z)(e(#) + ē) <g> (e(<fë) + ē)dz, (2.37)
 3-"x'JQ( o,i)

 Ce(A, 0)ē : ē = lim [ Cnj (A, rjz)(e(<j>{) + e) : (e(^|) + ē)dz, (2.38)
 o,i)

 where

 - div(Čn3' (A, rjz)(e(0Í(z)) + ē)) = 0, for z in Q( 0, 1), (2.39)

 # is in w£2(Q(x,r);R3), and C^(P,rjZ) = *?' (r,-a)Pi.
 Since ^ x™-7 (r7z)dz - ► #¿(0), it is evident that we can introduce modifications

 X*3(rjz) for which

 [ 'x?j (rjz) - xïj ( rjz)'dz -> 0 as j -» oo (2.40)
 J Q(0,1)

 and for some J that

 Í x7j(r3z)dz = ei(0)i (2-41)
 JQ{ 0,1)

 for every j > J. An application of the higher integrability result of Meyers and Elcrat [18]
 together with Holder's inequality shows that the convergence given by (2.40) is sufficient
 to guarantee the strong L2(Q(0, 1); R3x3) convergence of the difference e(0|) - e((ļ)ļ) and
 Theorem 2.2 follows.
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 2.3. Proof of Theorem 2.3. Given a set of functions i = 1, . . . , TV, and C(P, x) satis-
 fying the hypothesis of Theorem 2.3, we suppose first that the array (C(A, x), dC(A, x))

 takes values in 5^(x) (A) and establish the theorem for this case.
 Since (C(A, x), dC(A, x)) G Sö(x)(A), it follows that for each x in fî the associated

 function C(P,x) is defined for all P in Af( A) in terms of a simple function defined on

 Q( 0, 1) indexed by x and denoted by Co(P,y,x) = J2íLi XíÍY^^í^ where

 C(P,x)ē:ē= f C0(P,y,x)(e(w) +ē) : (e(w) +ē)dy. (2.42)
 JQ( 0,1)

 Here w is the Wķ2(Q{ 0, 1), R3) solution of

 - div(C0(A,y,x)(e(w(y)) + ē)) = 0 (2.43)

 for any constant strain ē. In order to establish the theorem for this case, it suffices
 to show that there exists a sequence in {Cn(P, x)}^! C C( A, 7) that G converges to
 C(P, x) for all P in A) . Repeated application of Lusin's theorem together with the
 differentiability of C(P, x) with respect to P in J'f( A) delivers the approximation to
 C(P, x) and 6i(x) by piecewise constant functions of the form

 M{k) M(k)

 Cfc(P, x) = ¿ X^Č(P, x*) and 6kt(x) = ¿ (2-44)
 j= 1 j= 1

 Here Ū = ilj and x^ is a point in ūj. The sequence {Cfc(P, x)}^=1 converges
 almost everywhere to C(P, x). This implies that the sequence G converges to C(P, x);
 see [27]. The sequence {öf(x)}^=1 also converges almost everywhere to 6i(x). At each
 sample point x^, one has

 Ü(P,xJ)c:c = [ Ü0(P,y,xJ)(e(w ) + ē) : (c(w) + ē)dy, (2.45)
 Jq( o,I)

 where w is the Wķ2(Q( 0, 1),R3) solution of

 - div (C0 (A, y, x^)(e(w(y)) + ē)) = 0. (2.46)
 Motivated by (2.45) and (2.46), the functions Co(A,y,x^) are extended to R3 in the y

 variable by periodicity and for k and n sufficiently large, we define the tensor Ck,n(P , x)

 in C(A, x) by
 M(k)

 Cfe,n(P, x)=£ xn*C0(P, x/n, x*). (2.47)
 3 = 1

 From the local property of G convergence [27] and from the theory of periodic homog-

 enization [3], it is evident that {C 'n(P, x)}^ļ G converges to C (P, x) for every P
 in Af( A). Since the topology of G convergence is metrizable [8], [25], an application

 of the triangle inequality provides a diagonal sequence {Ckj,nj (P, x)}^ that G con-
 verges to C(P, x) for every P in Af( A) and the theorem follows for the case when
 (C(A,x),9C(A,x)) takes values in 5^(X)(A).

 Next given a set of functions i = 1, . . . , N and C(P, x), satisfying the hypothesis of

 Theorem 2.3, suppose that (C(A,x),9C(A,x)) takes values in the closure of 5^(X)(A).
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 Then for each x in ÎÎ, there is a sequence {(CJ(A,x),9C'7(A,x))}^:1 C S0(x)(À)
 converges to (C(A, x), <9C(A, x)). The theorem follows from similar arguments on noting
 that one has an approximation to C(P,x) of the form given by (2.44) and at the sample

 points C(P, x£) = lim.,--«» Č?(P,x£).

 3. Homogenization of stress fluctuations and L°° estimates for weak limits.
 In this section, a homogenization theorem is presented for quadratic functions of a weakly

 converging sequence of stresses associated with a G convergent sequence of elasticity
 tensors. This result is used to obtain L°° estimates for the weak L2 limit of the sequence.
 In what follows it is assumed that the sequence {Cn(P, x)}^ G converges to C^QP, x)
 for every P in Af(A). Here the sequence of stresses satisfy an = Cn(A, x)£(un),
 where un is the Wg'2(iî, R3) solution of

 - div(Cn(A, x)6(un)) = f . (3.1)

 The weak limit of the stresses aM is given in terms of the Wj'2(iî, R3) solution uM of

 - divtC^A, x)e(uM)) = f , (3.2)

 and aM = C£7(A,x)e(uM).
 We begin by considering the limits of quadratic functions of sequences of weakly

 converging stress tensors. Given any symmetric fourth order tensor n and any function
 p(x) in C°°(i 2), then the following homogenization result holds:

 Theorem 3.1 (Homogenization of stress fluctuations in the ith phase). Given that
 {C^AjX)}^! G converges to CE(A,x), then

 lim [ p(x)xr(x)n<7n(x) : <rn(x)dx = f p(x)ñ¿(x)aM(x) : <rM(x)dx, (3.3)
 n_>0° Jū JŪ

 where

 ni(x)<rM(x) : aM{x) = (Se(A, x)AiIIAiViCß(A, x)S£(A, x))ctm(x) : <rM(x). (3.4)

 Here SB(A,x) = (Cß(A,x))_1 is the effective compliance.

 Equivalently

 Xr(x)n<rn(x) ; <7n(x) (S£(A,x)AinAiViC£(A,x)Sß(A,x))<TM(x) : aM(x) (3.5)

 in the sense of distributions. We specialize to the case n = I where I is the fourth order
 identity tensor; then n<rn : an = |o*n|2 and we write

 lim f p(x)|crn|2dx = lim [ p(x)|crn - aM |2dx
 n- >oo Jq n-*oo Jq

 + [ p(x)|crM|2dx. (3.6)
 J n

 Prom Theorem 3.1 it follows that

 I<7n(x) - <tm(x)|2 Q(x)ctm(x) : <rM(x) (3.7)

This content downloaded from 167.96.145.178 on Fri, 10 Jan 2020 19:40:54 UTC
All use subject to https://about.jstor.org/terms



 STRESS CONSTRAINED G CLOSURE 307

 in the sense of distributions, where Q is given by

 QW = {S(S£(A' x) Ai ^<^(4, x)Sß(A, x) ļ - I. (3.8)
 Prom (3.7) it is evident that the tensor Q is positive definite. The next theorem provides
 an upper bound on the L°° norm for the homogenized stress aM .

 Theorem 3.2. Given that {Cn(A,x)}^=1 G converges to C£(A, x), with an =
 Cn(A,x)e(un) and aM = CE(A,x)e(uM), then

 {(I + Q(x))<tm(x) : ctm(x)} < liminf II |<rn|2|l°°. (3.9)
 71- >00

 almost everywhere.

 The homogenized versions of the stress constraints (1.7) and (1.10) follow from The-
 orems 3.1 and 3.2 and are given in the following corollaries.

 Corollary 3.1. If for a collection of nonnegative functions {pj}j=1 in C°°(iî), it is
 known that

 [ pj(x)'(jn'2dx < K2 I pj(x)dx, for every n, (3.10) Jo. Jq
 then oM satisfies

 [ p¿(x)(I + Q(x))<7M(x) : crM(x)dx < K2 Í p¿(x)dx. (3.11) JQ Jū

 Corollary 3.2. If it is known that

 II |<Jn| ||oo < Ki f°r every n, (3.12)
 then aM satisfies

 ^/(I + Q(x))(taí(X) : aM(jí) < K, (3.13)
 almost everywhere.

 3.1. The local homogenization theorem for stress and strain fluctuations. In this sub-
 section the local homogenization Theorem 3.3 is established. The local homogenization
 theorem is applied in the following subsection to establish Theorem 3.1. Consider a
 sequence {Cn(P,x)}~=1 that G converges to CE(P,x) for every P in Af( A). Given
 a constant strain ē and an open subset u of ii, the local corrector function wj is the
 W01,2(u;;R3) solution of

 - div(Cn(Ax))(e(w?) + ē) = -div(C^(A,x)ē), in w. (3.14)
 The differential equation (3.14) is written in the weak form given by

 [ Cn(A,x)(€(w?)+ē) :c(v)dx- J [ Cß(A,x)c : c(v)dx = 0, (3.15) J oj J (jj

 for all v in W¿,2(u;; R3). In the sequel, a generic open subset of Q, is denoted by u. The
 volume of u is denoted by |u;| and an application of Cauchy's inequality in (3.15) give

 [ |c(w?)| 2dx < (4A2/A2)M |ē|2, (3.16)
 J tu
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 and

 f |e(w") + e'2dx < (4A2/A2 + 1) M |ē|2. (3.17)
 J LJ

 Integration by parts and taking limits shows that sequence of corrector functions
 converge weakly to the following limits given by

 Property 3.1. The sequence converges weakly to zero in Wq'2(uj; R3); thus

 c(w?) 0 (3.18)
 and

 Cn(A,x)(e(w") + ē) - 1 Ce(A, x)ē. (3.19)
 Moreover, passing to a subsequence, if necessary, standard results show that

 limn_^.00 |w™|2dx = 0. It is Property 3.1 that makes the correctors useful for our
 purposes.

 We set ÔC = CE(A + i/JM,x) - Cß(A,x) and examine the dependence of
 (1/M) JuS Cē : ēdx with respect to the increment Sß. The correctors associated with
 the sequence {Cn(A + SßM, x)}£Li are denoted by w™ -hex, where w™ are Wqì2(u; R3)
 solutions of

 Í Cn(A + Sß M. xì(e(wy) 4- ē) : efvìdx - í C^(A + ¿/?M,x)ē : e(v) dx = 0, (3.20)
 J LJ J (j)

 for all v in W01,2(w;R3) and

 C"(A + Sß M, x)(f(w?") + ē) -»■ CE( A + Sß M, x)ē (3.21)
 c(w?) ->■ 0. (3.22)

 For any choice of test function p(x) that is differentiable on uj and continuous on ŪJ,
 it follows from (3.19) and (3.21) that

 (l/M) [ p(x)0Cē : ēdx = lim (l/M) [ p(x)Cn(A + 5/3M, x)(e(w") + ē) : ēdx
 Jlj n-*°° Jlj

 - lim (l/M) [ p(x)Cn(A,x)(€(wJ) H-ē) : ēdx. (3.23)
 n->°° Ju

 Writing Cn(A 4- 00 M, x) = Cn(A,x) + SßM ixf and w™ = w™ + ¿wn, where ôwn =
 w™ - wļ and substitution into (3.23) gives

 (l/M) [ pôCë : ēdx = lim
 Ju, n">°°

 X (l/M) i pSßMiX?(e(w")+e) : Z-'-p8ßMix71e{5wn) : Z + pCn(A,x)6(áwn) : ēdx.
 Jlj

 (3.24)

 To proceed further, subtract (3.15) from (3.20) to obtain for every v in Wq,2(u;;R3) the
 equation

 0= Í ößMiXi(e(w^) +ë) : e(v)dx4- Í Cn(A, x)e(¿wn) : e(v)dx
 Jlj J lj

 4- f 6ßMiX?e(Swn) : e(v)dx - Í 8CZ : e(v)dx. (3.25)
 J LJ J LJ
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 Choosing v = (pwj) in (3.25), substitution into (3.24), and taking limits gives

 (l/M) f pSCē : ëdx = Sß lim
 Juj n^°°

 x((l/|u;|)jf pMiX?(e(w?) + ē) : (e(w?)+ ē)dx +(l/'u>') j pMtf ?(e(w?)+ ē) :e(iw»)dx) .
 (3.26)

 Writing

 S = limsup(l/|u;ļ) í pá/?M¿xr(€(w?) + ¿) : e(áwn)dx and
 n - kx) J &

 S = liminf(l/|ct;|) [ pč/?M*xr(e(w?) + ē) : e(¿wn)dx, (3.27)
 Ju

 an application of Cauchy's inequality gives

 |5| < MooKtfy/M and '§' < ''p''«>K'ē'2 y/'8ß', (3.28)
 where K is a constant independent of Sß and choice of u C Í2 and ||p||oo is the maximum
 value of p on TD. From this one arrives at the

 Property 3.2. For every u C Ū and differentiable function p continuous on TD,

 (l/M) j pS Cē : ēdx = í/3 Jim ((1/M) J pMiX?(e(w?) +ē) : (c(w?) + ē)dx)
 + SßR(6ß,u>,p),

 (3.29)

 with

 R(6ß,u>,p) = lirn^ ((1/M) J pM¿x"(e(wJ) +ē) : e(áwn)dx^ (3.30)
 and

 |Ä(i/3,«,p)| < llpllooJflcl2^. (3.31)
 Next consider subsets of ÍŽ given by cubes Q(x, r) and the associated local corrector

 functions are denoted by w™'r. Put

 f/(x, r) = n_>°° lim (l/|Q(x, r)|) / MiXr(e(w?'r) + 1) : (e(w?'r) + t)dy. (3.32) n_>°° J Q(x,r)

 Given the increment á/3 consider the intersection of Lebesgue points of CĒ(A, x) and
 Ce(A + Í/3M. x). Choose p - 1 and from Property 3.2 one has

 <5Cē : ē = lim(l/|Q(x, r)|) f SCe:edy
 r^° JQ(x,r)

 = Sß lim (ff (x, r) + R(6ß, x)), (3.33)
 i - ►O

 almost everywhere on Ū and for any constant strain e. Here 'R(Sß,x)' < K'e'2^/'8ß'. It
 is evident from (3.33) that : ē is also given by

 : ē = lim lim (l/|Q(x, r)|) Í MiX?(e(w"'r) + e) : (e(w"'r) + e)dy. (3.34)
 ÖM, i .0 n- .oo JQ(x,r)
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 Collecting results, one substitutes (3.33) into (3.29) of Property 3.2 to obtain the local
 homogenization result.

 Theorem 3.3 (Local Homogenization). Given any u C fi and any differentiate test
 function p continuous on ZU, the sequence of local correctors, {w™ + ēx}£Ļļ defined by
 (3.14), satisfy

 Jim^l/M) J pMixt"(e(w?)+ē):(e(w?) + 6)dx = (l/|u;|) J : ēdx

 = (l/M) f pM¿V*C£é : ēcht.
 J UJ

 (3.35)

 For future reference it is noted that the estimate (3.17) gives the bound

 (^Ce(A,x))c : 6 < (4A2/A2 + l)|ē|2, (3.36)
 almost everywhere in fi.

 3.2. Homogenization of stress fluctuations. In this subsection Theorem 3.3 is used to

 establish Theorem 3.1. Consider a sequence of elasticity tensors {Cn(P,x)}^=1 that G
 converges to CE( P,x) for every P in Af(A). Here u" is the W01,2(íí;R3) solution of

 -div(Cn(A,x)e(un)) = f (3.37)

 and uM is the Wq,2(îî;R3) solution of

 - div(C£(A, x)e(uM)) = f , (3.38)
 where un converges weakly to uM in lí/01,2(íl; R3) as n tends to infinity. The first step
 is to approximate u M by piecewise affine functions. Given 8 > 0 there exists a function
 wá in W01,2(fi;R3 ) which is piecewise affine on fi and

 [ ^(w5) - £(uM)|2dx < á2, (3.39)
 Jn

 see, for example, [7]. The strain e(w<5) is constant on the open sets c o%6 and fi = U*ii ^s-
 In each open set u /J, one has e(ws) = ?x H- c*, where ? is a constant strain and c% is a
 constant vector.

 The right-hand side fs = - div(CjE7(A,x)ē(w<ī)) is chosen and wn'5 is defined to be
 the Wo'2(îî;R3) solution of

 - div(Cn(A, x)6(we'5)) = f5. (3.40)
 Integration by parts and taking limits shows that wn,s converges weakly to ws in
 W#'2 (fi; R3 ) as n goes to infinity and

 Cn(A, x)e(wn,<5) C£?(A,x)e(w5). (3.41)
 The error between the weakly converging sequences {un}^L1 and the sequence of

 global corrector functions {w71'5}^! can be controlled uniformly with respect to n.
 Indeed, application of Cauchy's inequality gives a constant Co independent of n and S
 such that

 ļ |e(un) - e(wn'á)|2dx < Cļ (^) 62, for all n > 0. (3.42)

This content downloaded from 167.96.145.178 on Fri, 10 Jan 2020 19:40:54 UTC
All use subject to https://about.jstor.org/terms



 STRESS CONSTRAINED G CLOSURE 311

 Collecting results we write u = w5 + r5,un = wn'5 + zn'5. Here rs and zn's are in
 W01,2(n;R3) and satisfy

 [ |e(rÄ)|2dx < S2 and Í |e(zn,<5)|2dx < á2, for all n > 0. (3.43)
 Jn Jçi

 Given a differentiate test function p(x) continuous on ÍÍ, one writes

 J pXjīl(Tn : andx

 = í px]TíAj(e(wniô) -h e(zn'(5)) : Aj(e(vrnìó) + c(z n'â))dx
 J n

 «W ,

 - / px™nAje(wn,á) : Aje(wn'S)(bc + 0(6). (3-44)
 ¿=i -M

 The following observation follows easily from integration by parts and the definitions of
 G convergence.

 Localization Property. Let wl;n'Ä be the solution of

 - div(Cn(A, x))(e(w!;n,i) + Ť) = - div(C£(A, x)?) (3.45)

 on <jj', where wl;n,(5 = 0 on thé boundary of then

 lim / |e(win,í) + ei - e(wn'á)|2dx = 0. (3.46)
 "^00 J ui

 Applying Theorem 3.3 and working up from small to intermediate scales, one finds that

 «(¿) p
 / p pAjnAjViC£(A,x)ēi -.tdx. (3.47)

 i=i -LJ
 «(<*)

 = 52 lim / pxyiIA^eíw^+^rA^eíw^+ťJdx
 k(6)

 = 71-400 lim ^2 J f PX^HA^w71'6) . Aje(wnìS)dx. 71-400 i= i J "s

 Proceeding from large scales down to intermediate scales, we see from (3.36), (3.39),
 (3.44), and (3.47) that

 r k{6) r -
 lim I r px^Iían / pA*nAjVJ'C^(A, x)e* : e*dx + 0(¿)
 n^°°^ éí-M

 = f pAjīlAjV:jCE(Aix)e(uM) : e(uM)dx + 0(S)
 Jn

 - f pAjīlAjVjCE(Aix)SE(A,x)aM : SE(A,-x)crMdx.+0(ô)
 (3.48)

 and Theorem 3.1 follows noting that S is arbitrary.
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 To establish Theorem 3.2, note that for any positive test function p in C°°(iî), Holder's
 inequality gives

 Í p(x)(|<Tn|2 - II |<Tn|2||oo)dx < 0. (3.49)
 Jíl

 Sending n to infinity together with Theorem 3.1 gives

 [ p(x)((I + Q)crM : oM - liminf || lor71)2 ||00)dx < 0, (3.50)
 Jn

 for every choice of p and Theorem 3.2 follows.

 4. The stress constrained G closure and relaxation of stress constrained

 design problems. The relaxed formulation of the design problems PL and P°° is in-
 troduced using the notion of stress constrained G closure. To do this we reformulate the
 design problems PL and P°° in an equivalent way. For a given tolerance K, we define
 the set of controls denoted by Ad°°{K, A, 7) to be the set of all local elasticity tensors

 C(P, x) = Y^iLi P¿X¿(X) with P in J'f( A), 7n < lu such that

 II W' Hoc < K, (4.1)

 where cr(x) = C(A, x)e(u(x)), and u is the W01,2(iî,R3) solution of

 - div(C(A, x)e(u)) = f . (4.2)

 The P°° design problem is given by

 P°° = inf F( u). (4.3) V ' Ad°°(K, A, 7) V '

 Recent developments in regularity theory [2], [11], [12], imply that the class of controls
 Ad°°(K, A, 7) is generated by a strikingly large class of configurations. The set of con-

 trols denoted by AdL (K, A, 7) is defined to be all local elasticity tensors C(P, x) =

 2¿Lip¿X¿(x) with- P in J'f(A), J^Xidy: < 7* associated with solutions u of (4.2) sat-
 isfying the finite number of integral stress constraints given by (1.10). The PL design
 problem is given by

 PL = inf F(u). (4.4)
 AdL{K, A, 7)

 The G closure of Ad°°{K, A, 7) is defined to be all functions (C(P, x), #i(x),. . ., 6n( x))

 for which there exist sequences {Cn(P,x)}^=1 in Ad°°(K, A, 7) G converging in C(P,x)
 for every P in Af( A) with the associated sequences {x?}??=i converging in L°° weak
 * to 0i. This set is denoted by QAd°°{K, A, 7). Similarly for a finite number of
 stress constraints the G closure of AdL(K, A, 7) is denoted by QAdL(K, A, 7) and is

 defined to be all functions (C(P, x),öi(x), . . . ,0/v(x)) for which there exists sequences
 {Cn(P,x)}f=1 in AdL(K, A, 7) G converging to C(P,x) for every P in jV( A) with the
 associated sequences {x?}%Li converging in L°° weak * to The sets QAd°°{K, A, 7)
 and QAdL(K, A, 7) are referred to as stress constrained G closures of the original set of
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 controls C(A, x) defined in the introduction. The relaxed formulations for P°° and PL
 are given by

 RP°° = inf{F(u); u in Wq'2(îî, R3), - div(C(A, x)e(u)) = f, C(A, x)

 in ÇAd°°(K, A, y)} (4.5)
 and

 RPl = inf{F(u);u in W01,2(íl,R3), -div(Č(A,x)c(u)) = f,C(A,x)

 in QAdL{K, A, 7)}. (4.6)

 The desired properties of the relaxed problems are given in the following theorem.

 Theorem 4.1. The relaxed problems have the following properties.

 1. RP°° = P°° and RPL = P^.
 2. There exists a function C(P,x) in QAd°°{K, A, 7) and displacement û in
 W01,2(il,R3) for which

 - div(C(A, x)c(û)) = f , (4.7)

 and

 RpOO = ^

 Similarly there exists a function C*(P, x) in QAdL(K, A, 7) and displacement

 u* in Wq'2(îî,R3) for which

 - div(C*(A, x)e(u*)) = f, (4.9)

 and

 RPl = F( u*). (4.10)
 3. There exists a recovery sequence of controls {C71}^! in Ad°° ( K , A, 7) G converg-

 ing to C(A, x). Similarly there exists a recovery sequence of controls {C71}^!
 in AdL(K, A, 7) G converging to C*(A,x).

 As it stands, the definition of the stress constrained G closure is given in terms of
 constraints on G convergent sequences of controls. We show that the explicit character-
 ization of QAdL(K, A, 7) can be found and is given in terms of constraints on suitable
 homogenized quantities. For the set QAd°°(K , A, 7) we develop an upper bound in terms
 of homogenized quantities.
 In order to characterize QAdL(K, A, 7) we introduce a new set of controls. We

 begin with the set C(A,7) given by all controls C(P, x) = P¿X¿(X) E m
 •W(A), fQ Xidx < 7 i. Next we consider the unconstrained G closure of C( A, 7) G converg-
 ing to C(P, x) for every P in Af(A) with the associated sequences {x?}^Li converging
 in L°° weak * to 0i. This set is denoted by QC( A, 7). The set HL(K, A, 7) is defined to

 be all C(P, x) in £/C(A,7) for which the associated stress is given by a = C(A, x)e(v),

 where v is the VFq'2(íí,R3) solution of

 - div(C(A, x)e(v)) = f, (4.11)
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 and g satisfies

 [ Pj (x) (I + Q(x))cr(x) : a{x)dx < K2 f pj(x)dx, for j = 1, . . . , L, (4.12) J il J Çl

 with

 Q(x) = |x^(Š(A,x)A?VíČ(A,x)Š(A,x)| - I, (4.13)
 and S(A,x) = (C(A,x))_1. The characterization of QAdL{K, A, 7) is given by the
 following

 Theorem 4.2. For any t > 0, one has

 Hl{K - 1, A, 7) c QAdL(K, A, 7) C HL(K, A, 7). (4.14)

 One can use the explicit set of controls provided by the class HL(K, A, 7) to provide a
 relaxed design problem given in terms of explicit homogenized quantities. We introduce
 the homogenized design problem

 HPl = inf F(u). (4.15)
 HL(K, A, 7)

 The first feature of the homogenized design problem is that the infimum HPL is
 attained by a function in HL(K, A, 7), i.e.,

 Theorem 4.3. There exists a function C(P,x) in HL(K, A, 7) and displacement û in
 W01,2(Q,R3) for which

 - div(C(A,x)e(û)) = f, (4-16)

 HPl = F(û), (4.17)
 where

 i Pj(x)( I + Q(x))a(x) : d(x)dx < K2 f pj(x)dx , for j = 1, . . . , L, (4.18)
 Jq Jn

 and

 QW = x)A?ViC(A, x)S(A, x)) j - I. (4.19)
 The second important feature is the connection between the minimizer C(P, x) of the
 homogenized design problem and nearly optimal configurations. To make the connection
 the following optimal design problems are introduced.

 pk=r(r, C(P,x) inf in C(A,7) A F(u), (4.20) C(P,x) in C(A,7) A

 subject to the constraints:

 f pj(x)|<r|2dx < (1 + ļ)K2 K f pj(x)dx,j = 1 (4.21) Jū K Jū

 where u is the R3) solution to the state equation

 - div(C(A, x)e(u)) = f (4.22)
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 and a = C(A, x)e(u). It is clear that as k tends to infinity, the constraints given in the
 design problems Pķ approach the stress constraints associated with PL. The problems
 P£ share the same feature as the problem PL in that they are optimal design problems
 over admissible configurations of N linear elastic materials. The connection between the
 minimizer of HPL and nearly optimal configurations is given in the following theorem.

 Theorem 4.4. Given a minimizer C(P,x) of HP L, then there is a sequence of config-
 urations and associated controls {Cfc(P,x)}^=1 in C( A, 7) such that for all P in A/*(A),

 the sequence {Cfe(P,x)}^=1 G-converges to C(P,x) and the stresses ak satisfy the con-
 straints (4.21). For this case, one has

 lim F(uk) = HPl. (4.23)
 k - y 00

 Moreover, given any e > 0, there exists an index J > 0 such that for all k > J,

 PfcL<F(ufc)<PfeL + £ (4.24)
 and

 lim P£ = HPl. (4.25)
 fc- >00

 Thus one can use the minimizer for the homogenized design problem to recover nearly
 optimal stress constrained designs. It is clear that the homogenized design problem
 introduced here provides a way to identify nearly optimal configurations to a family of
 stress constrained problems with constraints approaching the original problem. Indeed, if
 instead of considering the problem PL we consider a problem with the stress constraints
 given in terms of a slightly larger tolerance if2 (1+1 /fc), the homogenized problem delivers
 an admissible and nearly optimal configuration.
 Next, an upper bound for the set QAd°°(K, A, 7) is provided. The set W°°(lf, A, 7)

 is defined to be all C(P,x) in QC( A, 7) for which the associated stress is given by
 g = C(A,x)e(v), where v is the Wq'2(íí,R3) solution of

 - div(C(A,x)e(v)) = f, (4.26)

 and g satisfies

 (I + Q(x))c(x) : cr(x) < K2, (4.27)
 almost everywhere. The upper bound for the set Q Ad°° (K, A, 7) is given by

 Theorem 4.5.

 ÇAd°°(K, A, 7) c H°°(^, A, 7). (4.28)

 As before, one can use the explicit set of controls provided by the class Tť00^, A, 7)
 to identify nearly optimal configurations for stress constrained problems. We introduce
 the homogenized design problem

 HP00 = inf F( u). (4.29)
 ?ť 00 (AT, A, 7)

 The first feature of the homogenized design problem is that the infimum HP°° is
 attained by a function in H°° ( K, A, 7) , i.e.,
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 Theorem 4.6. There exists a function C(P,x) in 7ť°°(Ar, A, 7) and displacement û in
 Wq'2(í2,R3) for which

 - div(C(A, x)6(û)) = f , (4.30)

 and

 HP00 = F(û), (4.31)

 where

 (I + Q(x))<t(x) : cr(x) < K 2, (4.32)
 almost everywhere.

 Similarly, there is a connection between the minimizer C(P,x) of the homogenized
 design problem HP 00 and nearly optimal configurations. To make the connection con-
 sider a countable dense subset of the nonnegative functions in C°°(íí). For a
 finite collection of these functions S m = {PeìeLn the following optimal design problems
 are introduced:

 PM = inf F( u), (4.33)
 C(P,x) in C( A, 7)

 subject to the constraints:

 J^Pe(x)'a'2dx < (l + -^) K2 J pe(x.)dx, for pe in SM, (4.34)

 where u is the Wo'2(iî,R3) solution to the state equation

 - div(C(A, x)c(u)) = f (4.35)

 and a = C(A, x)c(u). It is clear that as M tends to infinity, the constraints given in the
 design problems PM approach the constraint given by (1.8). The problems PM share the
 same feature as the problem P°° in that they are optimal design problems over admissible
 configurations of N linear elastic materials. The connection between the minimizer of
 HP00 and nearly optimal configurations is given in the following theorem.

 Theorem 4.7. Given a minimizer C(P, x) of HP00, then there is a sequence of configu-
 rations and associated controls {CM(P,x)}^=1 in C( A, 7) such that for all P in AT(A),

 the sequence {CM(P, x)}|jg=1 G-converges to C(P,x) and the stresses aM satisfy the
 constraints (4.34). For this case, one has

 lim F(um) = HP°°. (4.36)
 M - >00

 Moreover, given any e > 0, there exists an index J > 0 such that for all M > J,

 PM < F(um) <PM + e (4.37)
 and

 lim Pm = HP°°. (4.38)
 M- ► OO
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 4.1. Proofs of Theorems 4.1, 4.2, and 4.5. The proof of Theorem 4.1 is given for
 the problem PP°°, noting that the properties of RPL are established in the same way.
 The inequality RP°° < P°° follows, noting that Ad°°(K, A, 7) C QAd°°(K, A, 7). A
 special sequence of controls with elastic tensors in Ad°°(K, A, 7) is constructed. Con-
 sider a minimizing sequence {C£7'n(A, x)}^ in QAd°°(K, A, 7) for the problem RP°°.
 The associated sequence of elastic displacements is denoted by {u71}^! and PP°° =
 limn_+00 F(u71). For each n there exists a sequence of elastic tensors {Cn,fc(A,x)}^=1
 in Ad°°(K, A, 7) for which Cn'fc(A,x), G converges to CE,n(A, x). The associated dis-

 placements un'fc in 1To'2(îî;R3) satisfy the state equation

 - div(Cn'fc(A, x)6(un'fc)) = /. (4.39)

 For a given n there exists an index kn and elastic tensor in Ad°°(K, A, 7) such that

 |F(un'^) - F(un)| < 1/n, (4.40)

 and

 - div(Cn,fcn (A, x)e(un,fcn )) = f. (4.41)

 Passing to a subsequence if necessary and appealing to the fundamental property of G
 convergence given in Sec. 2, there exists a function (A, x) in QAd°°{K , A, 7) for which

 (C^^AjX)}^!, G converges to C^( A, x). (4.42)

 The displacement associated with the effective elasticity C^(A, x) is denoted by û and

 - div(C^(A, x)c(û)) = f. (4.43)

 Properties 1, 2, and 3 of Theorem 4.1 follow immediately, noting that the objective
 function F(-) is continuous with respect to G convergence.

 To prove Theorem 4.2, we start by showing that HL(K - £, A, 7) C QAdL(K, A, 7).

 Given C(P,x) in HL{K - t, A, 7) there is a sequence (C^PjX)}^ in C( A, 7) G
 converging to C(P, x) for every P in Af( A). The associated stresses are given by
 <jn = Cn(A,x)6(un) and a = C(A,x)£(û). Application of Theorem 3.1 gives

 K2 f pjdx. > (K - t )2 Í pjdx.
 Jq JŪ

 > / pj(Q + I)cr : crdx
 Jn

 = lim [ pj'an'2dit. (4.44)
 n-*°° J n,

 From (4.44) it is evident that there exists an index N such that {Cn(P, x)}^^ C
 AdL(K, A, 7); hence C(P, x) is in ĢAdL(Ki A, 7). Next we show ĢAdL(K, A, 7) C
 Hl{K, A, 7). Given C(P,x) in QAdL(K, A, 7), there is a sequence {Cn(P,^)}^=1 in
 AdL(K, A, 7) that G converges to C(P,x). The associated stresses are given by an =
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 Cn(A,x)e(un) and a = C(A,x)e(û) and an application of Theorem 3.1 gives

 K 2 [ pjdx> lim [ pj'an'2dx
 JÇt n->oo Jū

 = f Pj(Q + I)<r:(rdx. (4.45)
 JQ

 and C(P,x) is an element of l-iL{K, A, 7).
 Lastly, it is noted that Theorem 4.5 follows immediately from Theorem 3.2.
 4.2. Proofs of the properties of the homogenized design problems. In this section the

 properties of the homogenized design problems given by Theorems 4.3, 4.4, 4.6, and
 4.7 are established. Proofs of Theorems 4.6 and 4.7 are given noting that the proofs
 of Theorems 4.3 and 4.4 follow the same lines. A special sequence of elastic tensors in
 C(P,7) is constructed. This sequence will be used to establish Theorems 4.6 and 4.7.
 To construct this sequence, consider a minimizing sequence (CE'n(P,x)}^=1 for HP00.
 The associated set of elastic displacements for the sequence {Cß,n(A,x)}^=1 is denoted
 by {un}^=1 and HP°° = lin^-«, F( un).

 For each n there exists a sequence of elasticity tensors {Cn'fc(P,x)}^:1 in C(P,7)
 such that Cn,fc(P,x), G converges to C£'n(P,x) for every P in J'f( A). The associated
 displacements un,fe in Wq'2(íí;R3) satisfy the state equation

 - div(Cn'fc(A, x)c(un'fc)) = f , (4.46)

 and we set = Cn,fc(A,x)e(un,fc). For every nonnegative differentiate function p,
 the constraint (4.27) together with Theorem 3.1 gives

 lim f p|crn'fc|2dx = [ p(Qn + l)an : andx. < K2 [ pdx, (4.47)
 00 Jn Jçi Jçi

 where an(x) = CjE7,n(A,x)e(un) and
 N

 Qn + I = ^S£7'n(A,x)A2ViCE'n(A,x)S£;'n(A,x). (4.48)
 i= 1

 A countable dense subset {pe}¿Li oí the set of nonnegative differentiate functions con-
 tinuous on the closure of the structural domain is introduced. Given n, put Sn = {pe}¿=i',
 then there exists an index kn for which

 I pt'<Jn'kn'2dx. < K2 i pe{ 1 + l/n)dx, for every p¿ in Sn (4.49) Jo, Jū

 |F(un'fcn) _ F(un)| < l/n, (4.50)

 where un'fcn is the W01,2(íí;R3) solution of

 -div(Cn'fc-(A,x)6(un'fc-)) = f (4.51)

 and <jn'fcn = Cn,fcn(A,x)e(un,/Cn). Passing to a subsequence if necessary and appealing
 to the fundamental property of G convergence given in Sec. 2, there exists a function
 C£(P,x) in C(A, x) for which

 {Cn'fc»(P,x)}£°=1, G converges to C*(P,x) (4.52)
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 for all P in N{ A). The sequence {(Cn'fcn(A,x)}^=1 constructed above satisfying (4.49-
 4.52) is called a configuration minimizing sequence and it is evident that
 limn-^oo F(un'fcn) = HP°°.
 The displacement associated with the effective elasticity C^(A,x) is denoted by ü,

 where

 - div(C£(A, x)e(ü)) = f , (4.53)
 <7 = Cß(A,x)e(ü) and

 N ^
 Q + 1 = Š^A, x)A2V*CE(A9 ^ x)SE. (4.54)

 ¿=i

 We proceed to establish Theorem 4.6. For each p¿ in {pe}^^ it follows that

 [ Pt{ Q + 1)5" : vdx = lim i Pe'crnìkn'2dx.
 JŪ n-+oc JQ

 < K2 Í pedx. (4.55)
 Jū

 Thus by density of {pe}eLii it is evident that Cß(P,x) is in H°°(K9 A, 7). Theorem 4.6
 follows from the continuity of F(-) and (4.50).

 To establish Theorem 4.7, one considers the design problems PM given by (4.33).
 It is first shown that PM < HP°°. Consider the configuration minimizing sequence
 {(Cn»fcn(P)X)}~=1. It is evident that given the index M, one has that for all n > M,
 that Cn'fcn(A,x) is admissible for PM, and PM < F( un'fcn). Sending n to infinity shows
 that PM < HP 00 . Noting that PM is monotone increasing with M and bounded above
 implies the existence of limM- 00 PM - Next it is shown that HP°° = limM->oo PM •
 Given M > 0, one can choose CM(P,x) in C( A, 7) with associated displacement uM in

 Wq,2(îî;R3) for which

 f Pk'vM'2dx < K2 [ pk{ 1 + 1/Af)dx, for pk in SM (4.56)
 Jū Jū

 and

 - div(CM(A, x)e(uM)) = f , (4.57)
 where

 pM < <pM + x¡Mt (4>58)
 From the fundamental property of G convergence and passage to subsequences if neces-

 sary, there exists an effective elasticity

 G converges to C^(P, x) for all P in J'f(A). The associated displacement ū in Wq '2(îî; R3)
 solves

 - div(C^(A, x)e(u)) = f . (4.59)
 Here liniM->oo F(uM) = F(u) and arguing as above one sees that

 A, 7). Observing that HP°° < F(u) = liniM-*oo> F(uM) together with (4.58)
 gives the set of inequalities

 HP00 < lim F(um) < lim PM < HP00. (4.60)
 M-+ 00 M- >00
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 - . -

 One concludes that HP00 = liniM-^oo P = F(ū) and that C (P, x) is a minimizer of
 HP 00 and Theorem 4.7 follows.
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